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SURFACE WAVES INDUCED BY EXTERNAL PERIODIC PRESSURE

IN A FLUID WITH AN UNEVEN BOTTOM

UDC 532.59I. V. Sturova

The behavior of waves generated by periodic pressure on the free surface is considered within the linear
shallow-water theory. The fluid depth is a piecewise-constant function, which implies the presence of
a finite-size bottom trench or elevation. For an arbitrary shape of bottom unevenness, the solution
of the problem reduces to a system of integral boundary equations. Manifestation of wave-guiding
properties of bottom unevenness is illustrated by an example of an extended rectangular elevation.
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Introduction. There are many investigations dealing with propagation of surface waves in a fluid with an
uneven bottom (see, e.g., [1]). The influence of variable topography of the bottom on generation of forced surface
waves, however, has not been adequately studied [2].

The present paper describes the solution of the problem of generation of surface waves by external periodic
pressure. It is assumed that the bottom is even except for a certain finite-size region with the fluid depth varied
as a step function. The problem is solved under the assumptions of the linear shallow-water theory. The method
of the solution proposed can be used for an arbitrary planform of the bottom trench or elevation, but the main
attention is paid to the bottom unevenness in the form of an extended rectangle because an elevation in the form
of an infinitely extended underwater ridge possesses wave-guiding properties. It seems of interest to consider the
influence of the finite size of the bottom unevenness on manifestation of wave-guiding properties.

Formulation of the Problem. Let the surface of a layer of an inviscid incompressible fluid be subjected
to a pressure periodic in time with a frequency ω of the form

p(x, y, t) = P (x, y) exp (−iωt), (1)

where x and y are the horizontal coordinates and t is the time. Let H1 be the depth of the fluid inside a domain Ω1

bounded by the contour S and H2 be the depth of the fluid outside this domain. Assumptions of a potential fluid
flow and low amplitudes of generated surface waves are used. The frequency of external loading is such that the
lengths of generated surface waves are significantly greater than the depth of the fluid. This allows us to use the
simplest formulation of the problem: the linear shallow-water theory. The domain occupied by the fluid is divided
into two subdomains: the bottom unevenness Ω1 and the remaining fluid Ω2.

Assuming that the fluid oscillations are steady in time, we seek the velocity potentials ϕj(x, y, t) that describe
the motion of the fluid in the domains Ωj (j = 1, 2):

ϕj(x, y, t) = Φj(x, y) exp (−iωt).

The elevation of the free surface ηj(x, y, t) = ζj(x, y) exp (−iωt) is determined by the relation

ζj = − iHj

ω
∆Φj .

We confine ourselves to considering the case where the localized region of external pressure is located inside
the domain Ω1.
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According to the linear shallow-water theory, Φj(x, y) (j = 1, 2) is found by solving the system of equations

∆Φ1 + k2
1Φ1 = −iωP (x, y)/(gρH1) (x, y ∈ Ω1), k1 = ω/

√
gH1; (2)

∆Φ2 + k2
2Φ2 = 0 (x, y ∈ Ω2), k2 = ω/

√
gH2 (3)

with matching conditions at the boundary S

Φ1 = Φ2, γ
∂Φ1

∂n
=

∂Φ2

∂n
(x, y ∈ S), γ =

H1

H2
(4)

indicating continuity of pressure and mass flux. In Eqs. (2)–(4), ∆ ≡ ∂2/∂x2 + ∂2/∂y2, ρ is the fluid density, g is
the acceleration of gravity, and n is the external normal to the contour S. The far field should obey the condition
of radiation

lim
r→∞

√
r
( ∂

∂r
− ik2

)
Φ2 = 0, r =

√
x2 + y2, (5)

which means that the surface waves are diverging as r →∞.
Method of the Solution. We seek the solution of Eq. (2) in the form

Φ1(x, y) = Ψ(x, y) + Φ0(x, y), (6)

where the function Ψ(x, y) is to be determined and Φ0(x, y) is the solution of the problem of the action of periodic
pressure on the surface of a fluid with a constant depth H1.

For simplicity, we assume that the pressure P (x, y) in (1) depends only on the quantity R

=
√

(x− x0)2 + (y − y0)2, where x0 and y0 are the coordinates of the epicenter of the external pressure region, i.e.,

P (x, y) = agρf(R). (7)

Here a is a factor with a dimensionality of length and the function f(R) is dimensionless.
The function Φ0(x, y) is determined from the equation

∆Φ0 + k2
1Φ0 = −iaωf(R)/H1

with a radiation condition similar to (5). The solution of this problem is found by integral Fourier transforms and
has the form (see, e.g., [3])

Φ0(R) =
aω

2ρ

[ i

π
v.p.

∞∫
0

kf̃(k)J0(kR) dk

gk2H1 − ω2
− f̃(k1)J0(k1R)

2gH1

]
, (8)

where

f̃(k) = 2π

∞∫
0

Rf(R)J0(kR) dR

is the Fourier transform of the function f(R), v.p. indicates the integral in the sense of the principal value, and
J0(·) is the zeroth-order Bessel function of the first kind. The second term in square brackets in equality (8) is
necessary to satisfy the radiation condition because the integrand always has a simple pole at the point k = k1.

The function Ψ(x, y) satisfies the equation

∆Ψ + k2
1Ψ = 0 (x, y ∈ Ω1). (9)

To determine the functions Ψ(x, y) and Φ2(x, y), we use the method of integral equations previously applied
in [4] to study diffraction of surface waves on a rectangular pit.

Equations (3) and (9) are the Helmholtz equations. The corresponding Green function G(r, r1; k) that
satisfies, in the general case, the equation

∆G + k2G = 2πδ(r − r1)

and the radiation condition in the far field has the form

G(r, r1; k) = −(iπ/2)H(1)
0 (kχ), (10)
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where r = (x, y), r1 = (x1, y1), χ2 = (x − x1)2 + (y − y1)2, δ(·) is the Dirac delta function, and H
(1)
0 (·) is the

zeroth-order Hankel function of the first kind.
Using the Green theorem in the domain Ω1, we obtain

ε1Ψ(r) +
1
π

∫
S

[
Ψ(r1)

∂G

∂n
(r, r1; k1)−G(r, r1; k1)

∂Ψ
∂n

(r1)
]
ds = 0 (x, y ∈ Ω1), (11)

where ε1 = 2 if the point r is inside S, ε1 = 1 if r belongs to the smooth segment of S, and ε1 = α/π if r is a corner
point; α is the solid angle of observation of the contour S from the point r. A similar integral relation is valid in
the domain Ω2:

ε2Φ2(r) =
1
π

∫
S

[
Φ2(r1)

∂G

∂n
(r, r1; k2)−G(r, r1; k2)

∂Φ2

∂n
(r1)

]
ds (x, y ∈ Ω2). (12)

In this case, we have ε2 = 2 if the point r is outside S, ε2 = 1 if r is on the smooth segment of S, and ε2 = 2−α/π

if r is a corner point of S.
To determine the potentials Ψ(r) and Φ2(r) inside the domains Ω1 and Ω2, respectively, we need to calculate

the values of Ψ(r) and ∂Ψ(r)/∂n on the contour S.
Using the points r on the boundary S, we obtain a system of two integral equations; one of them is Eq. (11),

and the other, according to (4), (6), and (12), has the form

ε2[Ψ(r)+Φ0(r)] =
1
π

∫
S

{∂G

∂n
(r, r1; k2)[Ψ(r1)+Φ0(r1)]− γG(r, r1; k2)

[∂Ψ
∂n

(r1)+
∂Φ0

∂n
(r1)

]}
ds (x, y ∈ S). (13)

After determining the values of Ψ(r) and ∂Ψ(r)/∂n on the contour S, we can calculate various parameters
of the flow, including vertical displacements of the free surface

ζ1 = iH1(k2
1Ψ−∆Φ0)/ω (x, y ∈ Ω1), ζ2 = iωΦ2/g (x, y ∈ Ω2).

Using an asymptotic representation of the Green function (10) as r →∞

G(r, r1; k2) ≈ −
√

π/(2rk2) exp {i[k2(r − x1 cos θ − y1 sin θ) + π/4]},

we obtain an approximate expression for the potential of surface waves far from the bottom unevenness

Φ2(r) ≈
√

1/(8πk2r) exp [i(k2r + π/4)]H(k2, θ) (r →∞),

where

H(k, θ) =
∫
S

[∂Φ2

∂n
+ ikΦ2(nx cos θ + ny sin θ)

]
exp [−ik(x1 cos θ + y1 sin θ)] ds.

Here θ = arctan (y/x) and nx, ny are the corresponding components of the external normal vector n to the contour S

at the point x1, y1.
The Kochin function H(k2, θ) is used to express the amplitudes of surface waves in the far field:

|ζ2| =
ω

g

√
1

8πk2r
|H(k2, θ)|.

Rectangular Bottom Unevenness. The results of the method proposed are demonstrated by an example
of a rectangular domain Ω1 of length L and width B. The origin of the coordinate system is located at the center
of the domain Ω1. In the numerical solution, the segments of the contour S parallel to the x and y axes are divided
into Nx and Ny identical segments, respectively. After that, each segment is divided into three identical parts, two
auxiliary internal points are introduced, and four-point cubic shape functions are used on each segment. The total
number of points where the unknown functions are determined is M = 6(Nx + Ny). A discrete form of Eqs. (11)
and (13) is written for each node. The set of these linear algebraic equations forms the system

[A1][Ψ] + [B1]
[∂Ψ

∂n

]
= 0, [A2][Ψ] + [B2]

[∂Ψ
∂n

]
= [C],

where [A1,2], [B1,2], and [C] are quadratic matrices of size M ; [Ψ] and [∂Ψ/∂n] are the vectors of nodal values of
the corresponding functions on the boundary S.
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Wave-Guiding Properties of a Rectangular Ridge. We briefly describe the solution of the problem
on determining the characteristics of waves trapped by the bottom unevenness of finite width B and infinite length.
Let H1 be the depth of the fluid in the domain |x| < B/2, |y| < ∞ and H2 be the depth of the fluid in the
domain |x| > B/2, |y| < ∞. To determine the wave-guiding properties of this bottom unevenness, we have to find
a nontrivial solution of homogeneous equations for the corresponding velocity potentials

∂2ϕ1

∂t2
= gH1 ∆ϕ1 (|x| < B/2, |y| < ∞); (14)

∂2ϕ2

∂t2
= gH2 ∆ϕ2 (|x| > B/2, |y| < ∞) (15)

with matching conditions on the lines |x| = B/2 similar to (4).
We seek the solutions of Eqs. (14) and (15) in the form

ϕj(x, y, t) = Φj(x) exp [i(λy − ωt)] (j = 1, 2).

To determine the functions Φj(x), we have the system of equations

Φ′′1 − σ2Φ1 = 0 (|x| < B/2), σ2 = λ2 − k2
1,

Φ′′2 − β2Φ2 = 0 (|x| > B/2), β2 = λ2 − k2
2

with the matching conditions

Φ1 = Φ2, γΦ′1 = Φ′2 (|x| = B/2), (16)

where the prime denotes differentiation in terms of x.
The following condition should be satisfied in the far field for waves trapped by the bottom unevenness:

Φ2 → 0 (|x| → ∞);

according to this condition, the solution for Φ2(x) has the form

Φ2 = α+ exp (−βx) (x > B/2), Φ2 = α− exp (βx) (x < −B/2), (17)

where α± are unknown constants. There is no wave motion far from the underwater ridge only in the case of real
positive values of β, which means that the condition λ > k2 is satisfied.

To study eigenoscillations of the fluid, it is convenient to divide them into symmetric and antisymmetric
modes with respect to the line x = 0. The velocity potential Φ1(x) can be represented in the form Φ1 = c+ cosh (σx)
for symmetric modes and in the form Φ1 = c− sinh (σx) for antisymmetric modes (c± are unknown constants).

Using the matching conditions (16) and the representation of solution (17) for |x| > B/2, we can easily show
that the characteristics of the trapped waves should satisfy the following conditions:

— for symmetric modes,

tanh (σB/2) = −β/(γσ); (18)

— for antisymmetric modes,

tanh (σB/2) = −γσ/β. (19)

Equations (18) and (19) can have real roots only for γ < 1 in the frequency range λ
√

gH1 < ω < λ
√

gH2. Hence,
only ridge-type unevenness possesses wave-guiding properties.

Numerical Results. Figure 1 shows the characteristics of trapped modes for an underwater ridge of width
B/H2 = 12 for γ = 0.5 in the dimensionless variables ω̄ = ω

√
H2/g and λ̄ = λH2. It is seen that the symmetric

mode has the shortest length of the trapped wave.
The action of periodic pressure is considered for a rectangular unevenness of size L/H2 = 60 and B/H2 = 12.

We use the pressure distribution for which the function f(R) in Eq. (7) has the form

f(R) = exp (−bR2), f̃(k) = (π/b) exp (−k2/(4b)). (20)

The numerical calculations are performed for bH2
2 = 2. Though the function f(R) in (20) was determined for

0 < R < ∞, the pressure spot can be considered as localized for the value of b used, because the value of f(R) with
R > 2H2 is less than 5 · 10−4 and rapidly decays with increasing R.
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Fig. 1. Frequencies of trapped modes for a rectangular ridge of width B/H2 = 12 with γ = 0.5:
the solid curve corresponds to ω̄ = λ̄; the dashed and dot-and-dashed curves refer to the symmetric
and antisymmetric modes, respectively.
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Fig. 2. Isolines of |ζ̄| for ω̄ = 0.3 and x0 = 0: (a) γ = 0.5 and y0 = 0; (b) γ = 0.5 and y0/H2 = −15; (c) γ = 1.5
and y0 = 0; (d) γ = 1.5 and y0/H2 = −15; the cross indicates the epicenter of external pressure.

Figure 2 shows the isolines of amplitudes of free-surface elevations ζ̄ = ζ1,2/a. The domain of the free surface
above the bottom unevenness whose projection is indicated in the figure by the internal rectangle and the immediate
vicinity of this domain are shown. The isolines of |ζ̄| corresponding to the levels from 0.01 to 0.05 with a step of 0.01
are plotted in Fig. 2a and b; the levels from 0.004 to 0.014 with a step of 0.002 are plotted in Fig. 2c and d. The
epicenter of external pressure corresponds to x0 = y0 = 0 for Fig. 2a and c and to x0 = 0, y0/H2 = −15 for Fig. 2b
and d. The values of |ζ̄| at the pressure epicenter are 1.06, 0.86, 1.03, and 0.83 for Figs. 2a–2d, respectively. The
calculations were performed for Nx = 6 and Ny = 30; a further increase in these parameters involves practically no
changes in the results. More detailed information on the behavior of |ζ̄| on the medial line x = 0 outside the main
pressure region is shown in Fig. 3. It is seen from Figs. 2 and 3 that, in the presence of a bottom elevation, the
preferable direction of surface waves is along this elevation; in the case of a bottom trench, the waves propagate
mainly in the transverse direction.

It is convenient to describe the behavior of surface waves far from the bottom unevenness by the scattering
diagram. The dependence D = |H̄|/

√
8πω̄ on the angle θ for x0 = 0 and y0/H2 = −15, where H̄ = γH(k2, θ)/

√
gH3

2 ,
is shown in polar coordinates in Fig. 4. In the presence of an extended bottom elevation (Fig. 4a and c), the surface
waves with the highest amplitude propagate in the direction of the long side of the bottom unevenness, i.e., along
the y axis, even in the far field.
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Fig. 3. Distribution of |ζ̄| along the line x = 0 for ω̄ = 0.3 and x0 = 0: (a) y0 = 0;
(b) y0/H2 = −15; the solid and dashed curves refer to γ = 0.5 and γ = 1.5, respectively.
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Fig. 4. Scattering diagram D(θ) for x0 = 0 and y0/H2 = −15: (a) ω̄ = 0.3 and γ = 0.5;
(b) ω̄ = 0.3 and γ = 1.5; (c) ω̄ = 0.5 and γ = 0.5; (d) ω̄ = 0.5 and γ = 1.5.

The results presented show that the method proposed is an effective tool for studying the behavior of long
surface waves generated by periodic disturbances in a fluid with an uneven bottom of a particular type. An extended
bottom elevation possesses wave-guiding properties, as an infinitely extended ridge does.
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